On Gromov's Approximating Tree

Anders Cornect
 Joint work with Dr. Eduardo Martínez-Pedroza

Memorial University of Newfoundland

August 2023

Approximating Trees

Definition

Let G be a graph. A distance ϵ-approximating tree of G is a tree with the same vertex set as G, such that for all $u, v \in G$,

$$
\left|d_{G}(u, v)-d_{T}(u, v)\right| \leq \epsilon .
$$

Approximating Trees

Definition

Let G be a graph. A distance ϵ-approximating tree of G is a tree with the same vertex set as G, such that for all $u, v \in G$,

$$
\left|d_{G}(u, v)-d_{T}(u, v)\right| \leq \epsilon .
$$

Many problems in graph theory are trivial on trees.

Gromov's Tree

Let G be a graph on n vertices with a base point w.

Gromov's Tree

Let G be a graph on n vertices with a base point w.
Theorem (Gromov, 1987)
Any graph G can be embedded by a function φ into a weighted tree T so that:

Gromov's Tree

Let G be a graph on n vertices with a base point w.
Theorem (Gromov, 1987)
Any graph G can be embedded by a function φ into a weighted tree T so that:

- $d_{T}(\varphi(u), w)=d_{G}(u, w)$ for all $u \in G$,

Gromov's Tree

Let G be a graph on n vertices with a base point w.

Theorem (Gromov, 1987)

Any graph G can be embedded by a function φ into a weighted tree T so that:

- $d_{T}(\varphi(u), w)=d_{G}(u, w)$ for all $u \in G$,
- T is non-distance-increasing, and

Gromov's Tree

Let G be a graph on n vertices with a base point w.

Theorem (Gromov, 1987)

Any graph G can be embedded by a function φ into a weighted tree T so that:

- $d_{T}(\varphi(u), w)=d_{G}(u, w)$ for all $u \in G$,
- T is non-distance-increasing, and
- T is a $2 \delta \log (n)$-approximation of G, where δ is the Gromov hyperbolicity of G.

Combining these shows that, for all $u, v \in G$,

$$
d_{G}(u, v)-2 \delta \log (n) \leq d_{T}(\varphi(u), \varphi(v)) \leq d_{G}(u, v)
$$

Gromov's Tree

Gromov's Tree

Gromov's Tree

The proof of this theorem gives a general method of its construction, but with no mention of time complexity.

However, many articles cite these two works with claims that it can be done in $O\left(n^{2}\right)$ time. This turns out to be the case, if we start with the distance matrix D of our graph G.

Gromov's Tree

In practical application, D is very rarely stored explicitly. Assume our graph G is stored as an adjacency matrix.

Gromov's Tree

In practical application, D is very rarely stored explicitly. Assume our graph G is stored as an adjacency matrix.

Our Contribution

Therefore, while this algorithm can theoretically find the distance matrix A of an approximating tree in $O\left(n^{2}\right)$ time, this is rarely true in practice.
G
D
A

Our Contribution

Therefore, while this algorithm can theoretically find the distance matrix A of an approximating tree in $O\left(n^{2}\right)$ time, this is rarely true in practice.

Our Contribution

Therefore, while this algorithm can theoretically find the distance matrix A of an approximating tree in $O\left(n^{2}\right)$ time, this is rarely true in practice.

However, we have used the particular geometry of connected graphs to bypass finding D completely.

Our Contribution

Therefore, while this algorithm can theoretically find the distance matrix A of an approximating tree in $O\left(n^{2}\right)$ time, this is rarely true in practice.

However, we have used the particular geometry of connected graphs to bypass finding D completely.

What we have done is written an explicit algorithm that results in the following theorem.

Theorem (Cornect and Martinez-Pedroza, 2023)

There is an algorithm that takes as input the adjacency matrix of a graph G on n vertices, and outputs in time $O\left(n^{2}\right)$ the distance matrix A of an approximating tree, as described in Gromov's Theorem.

Gromov Hyperbolicity

Definition

In a metric space (X, d), the Gromov product of x and y with respect to z is given by

$$
(x \mid y)_{z}=\frac{1}{2}(d(x, z)+d(y, z)-d(x, y))
$$

Gromov Hyperbolicity

Definition

In a metric space (X, d), the Gromov product of x and y with respect to z is given by

$$
(x \mid y)_{z}=\frac{1}{2}(d(x, z)+d(y, z)-d(x, y))
$$

Definition (four-point condition)

A space is called δ-hyperbolic if, for all $w, x, y, z \in X$,

$$
\delta \geq \min \left\{(x \mid y)_{w},(y \mid z)_{w}\right\}-(x \mid z)_{w} .
$$

Gromov Hyperbolicity

Definition (δ-slim triangle condition)

A space is called δ^{*} - hyperbolic if all triangles are δ^{*}-slim.

Gromov Hyperbolicity

Definition (δ-slim triangle condition)

A space is called $\delta^{*}-$ hyperbolic if all triangles are δ^{*}-slim.

Tree-Likeness

The δ-slim triangle condition is one way of seeing δ as a measure of how "tree-like" a graph is.

Tree-Likeness

The δ-slim triangle condition is one way of seeing δ as a measure of how "tree-like" a graph is.

Gromov's approximating tree gives another. The approximation is better for smaller δ. Small δ means a graph can be more accurately represented by a tree; it is more "tree-like".

Tree-Likeness

The δ-slim triangle condition is one way of seeing δ as a measure of how "tree-like" a graph is.

Gromov's approximating tree gives another. The approximation is better for smaller δ. Small δ means a graph can be more accurately represented by a tree; it is more "tree-like".

Fournier et al. (2015) detailed a way of approximating δ using Gromov's approximating tree in $O\left(n^{2}\right)$ from D. Our algorithm allows us to do this directly from G, while staying $O\left(n^{2}\right)$.

Simplified Explanation

An oversimplification, creating a tree T from graph G based at w :

Simplified Explanation

An oversimplification, creating a tree T from graph G based at w :

1 First, calculate the distance d_{w} from w to each other vertex ($O\left(n^{2}\right)$ by Dijkstra). Call the largest of these distances α.

Simplified Explanation

An oversimplification, creating a tree T from graph G based at w :

1 First, calculate the distance d_{w} from w to each other vertex ($O\left(n^{2}\right)$ by Dijkstra). Call the largest of these distances α.
2 Add all vertices with $d_{w}=\alpha$ to T. Keep edges between them.

Simplified Explanation

An oversimplification, creating a tree T from graph G based at w :

1 First, calculate the distance d_{w} from w to each other vertex ($O\left(n^{2}\right)$ by Dijkstra). Call the largest of these distances α.
2 Add all vertices with $d_{w}=\alpha$ to T. Keep edges between them.
3 Add all vertices with $d_{w}=\alpha-1$ to T. Keep edges between them, or to existing vertices in T.

Simplified Explanation

An oversimplification, creating a tree T from graph G based at w :

1 First, calculate the distance d_{w} from w to each other vertex ($O\left(n^{2}\right)$ by Dijkstra). Call the largest of these distances α.
2 Add all vertices with $d_{w}=\alpha$ to T. Keep edges between them.
3 Add all vertices with $d_{w}=\alpha-1$ to T. Keep edges between them, or to existing vertices in T.
4 If two vertices with $d_{w}=\alpha-1$ are connected to the same existing vertex in T, identify them.

Simplified Explanation

An oversimplification, creating a tree T from graph G based at w :

1 First, calculate the distance d_{w} from w to each other vertex ($O\left(n^{2}\right)$ by Dijkstra). Call the largest of these distances α.
2 Add all vertices with $d_{w}=\alpha$ to T. Keep edges between them.
3 Add all vertices with $d_{w}=\alpha-1$ to T. Keep edges between them, or to existing vertices in T.
4 If two vertices with $d_{w}=\alpha-1$ are connected to the same existing vertex in T, identify them.
5 Repeat steps 3 and 4 for $d_{w}=\alpha-2, \alpha-3, \ldots, 0$.

An Example

An Example

5

Memorial University of Newfoundland

An Example

An Example

An Example

An Example

Future Questions

- Can the bound of $O\left(n^{\omega} \log (n)\right)$ be improved in the general case, or for other types of metric spaces?

Future Questions

- Can the bound of $O\left(n^{\omega} \log (n)\right)$ be improved in the general case, or for other types of metric spaces?
- Is there a similar algorithm for strongly connected directed graphs (non-commutative metrics)?

Future Questions

- Can the bound of $O\left(n^{\omega} \log (n)\right)$ be improved in the general case, or for other types of metric spaces?
- Is there a similar algorithm for strongly connected directed graphs (non-commutative metrics)?
- What is the connection between the All Pairs Bottleneck Problem (APBP) and Gromov's approximating tree?

Acknowledgements

Thank you!

