Our Algorithm

< 口 > < 同 >

On Gromov's Approximating Tree

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

Memorial University of Newfoundland

August 2023

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

On Gromov's Approximating Tree

Our Algorithm

Approximating Trees

Definition

Let G be a graph. A distance ϵ -approximating tree of G is a tree with the same vertex set as G, such that for all $u, v \in G$,

$$|d_G(u,v)-d_T(u,v)|\leq \epsilon.$$

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

Our Algorithm

Approximating Trees

Definition

Let G be a graph. A distance ϵ -approximating tree of G is a tree with the same vertex set as G, such that for all $u, v \in G$,

$$|d_G(u,v)-d_T(u,v)|\leq \epsilon.$$

Many problems in graph theory are trivial on trees.

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

On Gromov's Approximating Tree

Approximating Trees	Gromov Hyperbolicity	Our Algorithm	Conclusion
○●○○○○○○	000	00	00

Gromov's Tree

Let G be a graph on n vertices with a base point w.

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

On Gromov's Approximating Tree

Our Algorithm

Conclusion

Gromov's Tree

Let G be a graph on n vertices with a base point w.

Theorem (Gromov, 1987)

Any graph G can be embedded by a function φ into a weighted tree T so that:

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

On Gromov's Approximating Tree

Memorial University of Newfoundland

Our Algorithm

Gromov's Tree

Let G be a graph on n vertices with a base point w.

Theorem (Gromov, 1987)

Any graph G can be embedded by a function φ into a weighted tree T so that:

• $d_T(\varphi(u), w) = d_G(u, w)$ for all $u \in G$,

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

Memorial University of Newfoundland

< D > < A > < B >

Our Algorithm

Gromov's Tree

Let G be a graph on n vertices with a base point w.

Theorem (Gromov, 1987)

Any graph G can be embedded by a function φ into a weighted tree T so that:

- $d_T(\varphi(u), w) = d_G(u, w)$ for all $u \in G$,
- T is non-distance-increasing, and

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

Memorial University of Newfoundland

▲ 同 ▶ < ∃ ▶</p>

Our Algorithm

Gromov's Tree

Let G be a graph on n vertices with a base point w.

Theorem (Gromov, 1987)

Any graph G can be embedded by a function φ into a weighted tree T so that:

- $d_T(\varphi(u), w) = d_G(u, w)$ for all $u \in G$,
- T is non-distance-increasing, and
- T is a $2\delta \log(n)$ -approximation of G, where δ is the Gromov hyperbolicity of G.

Combining these shows that, for all $u, v \in G$,

$$d_G(u,v) - 2\delta \log(n) \leq d_T(\varphi(u),\varphi(v)) \leq d_G(u,v).$$

< D > < A > < B >

Approximating	Trees
00000000	

Our Algorithm

Gromov's Tree

Approximati	ing Trees
00000000	

Our Algorithm

Gromov's Tree

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

Memorial University of Newfoundland

< A

Approximating	Trees
00000000	

Our Algorithm

Gromov's Tree

The proof of this theorem gives a general method of its construction, but with no mention of time complexity.

However, many articles cite these two works with claims that it can be done in $O(n^2)$ time. This turns out to be the case, if we start with the distance matrix D of our graph G.

Approximating Trees	Gromov Hyperbolicity	Our Algorithm	Conclusion
	000	00	00

Gromov's Tree

In practical application, D is very rarely stored explicitly. Assume our graph G is stored as an adjacency matrix.

Approximating Trees	Gromov Hyperbolicity 000	Our Algorithm 00	Conclusion

Gromov's Tree

In practical application, D is very rarely stored explicitly. Assume our graph G is stored as an adjacency matrix.

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

Memorial University of Newfoundland

Approximating Trees	Gromov Hyperbolicity	Our Algorithm	Conclusion
000000●0	000	00	00

Therefore, while this algorithm can theoretically find the distance matrix A of an approximating tree in $O(n^2)$ time, this is rarely true in practice.

G D A

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

Approximating Trees	Gromov Hyperbolicity	Our Algorithm	Conclusion
000000●0	000	00	

Therefore, while this algorithm can theoretically find the distance matrix A of an approximating tree in $O(n^2)$ time, this is rarely true in practice.

Approximating Trees	Gromov Hyperbolicity	Our Algorithm	Conclusion
000000●0	000	00	

Therefore, while this algorithm can theoretically find the distance matrix A of an approximating tree in $O(n^2)$ time, this is rarely true in practice.

$$G \xrightarrow{O(n^{\omega} \log(n))} D \xrightarrow{O(n^2)} A$$

However, we have used the particular geometry of connected graphs to bypass finding D completely.

Approximating Trees	Gromov Hyperbolicity	Our Algorithm	Conclusion
000000●0	000	00	

Therefore, while this algorithm can theoretically find the distance matrix A of an approximating tree in $O(n^2)$ time, this is rarely true in practice.

However, we have used the particular geometry of connected graphs to bypass finding D completely.

What we have done is written an explicit algorithm that results in the following theorem.

Theorem (Cornect and Martinez-Pedroza, 2023)

There is an algorithm that takes as input the adjacency matrix of a graph G on n vertices, and outputs in time $O(n^2)$ the distance matrix A of an approximating tree, as described in Gromov's Theorem.

Approximating Trees	Gromov Hyperbolicity	Our Algorithm	Conclusion
	●00	00	00

Definition

In a metric space (X, d), the Gromov product of x and y with respect to z is given by

$$(x|y)_z = \frac{1}{2} (d(x,z) + d(y,z) - d(x,y)).$$

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

Approximating Trees	Gromov Hyperbolicity ●00	Our Algorithm 00	Conclusion

Definition

In a metric space (X, d), the Gromov product of x and y with respect to z is given by

$$(x|y)_z = \frac{1}{2} (d(x,z) + d(y,z) - d(x,y)).$$

Definition (four-point condition)

A space is called δ -hyperbolic if, for all w, x, y, $z \in X$,

$$\delta \geq \min\{(x|y)_w, (y|z)_w\} - (x|z)_w.$$

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

Approximating	Trees
00000000	

Our Algorithm

Gromov Hyperbolicity

Definition (δ -slim triangle condition)

A space is called $\delta^* - hyperbolic$ if all triangles are δ^* -slim.

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

On Gromov's Approximating Tree

Memorial University of Newfoundland

Image: A mathematical states and a mathem

Approximating Trees	Gromov Hyperbolicity ○●○	Our Algorithm 00	Conclusion

Definition (δ -slim triangle condition)

A space is called $\delta^* - hyperbolic$ if all triangles are δ^* -slim.

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

Memorial University of Newfoundland

Approximating Trees	Gromov Hyperbolicity 00●	Our Algorithm 00	Conclusion
Tree-Likeness			

The δ -slim triangle condition is one way of seeing δ as a measure of how "tree-like" a graph is.

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

On Gromov's Approximating Tree

Approximating Trees	Gromov Hyperbolicity 00●	Our Algorithm 00	Conclusion 00

Tree-Likeness

The δ -slim triangle condition is one way of seeing δ as a measure of how "tree-like" a graph is.

Gromov's approximating tree gives another. The approximation is better for smaller δ . Small δ means a graph can be more accurately represented by a tree; it is more "tree-like".

Approximating Trees	Gromov Hyperbolicity ○○●	Our Algorithm 00	Conclusion

Tree-Likeness

The δ -slim triangle condition is one way of seeing δ as a measure of how "tree-like" a graph is.

Gromov's approximating tree gives another. The approximation is better for smaller δ . Small δ means a graph can be more accurately represented by a tree; it is more "tree-like".

Fournier et al. (2015) detailed a way of approximating δ using Gromov's approximating tree in $O(n^2)$ from D. Our algorithm allows us to do this directly from G, while staying $O(n^2)$.

Approximating Trees	Gromov Hyperbolicity 000	Our Algorithm ●0	Conclusion

An oversimplification, creating a tree T from graph G based at w:

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

On Gromov's Approximating Tree

Approximating Trees	Gromov Hyperbolicity 000	Our Algorithm ●○	Conclusion 00

An oversimplification, creating a tree T from graph G based at w:

I First, calculate the distance d_w from w to each other vertex $(O(n^2)$ by Dijkstra). Call the largest of these distances α .

Approximating Trees	Gromov Hyperbolicity 000	Our Algorithm ●0	Conclusion 00

An oversimplification, creating a tree T from graph G based at w:

- **I** First, calculate the distance d_w from w to each other vertex $(O(n^2)$ by Dijkstra). Call the largest of these distances α .
- **2** Add all vertices with $d_w = \alpha$ to T. Keep edges between them.

Approximating Trees	Gromov Hyperbolicity 000	Our Algorithm ●0	Conclusion 00

An oversimplification, creating a tree T from graph G based at w:

- **I** First, calculate the distance d_w from w to each other vertex $(O(n^2)$ by Dijkstra). Call the largest of these distances α .
- **2** Add all vertices with $d_w = \alpha$ to T. Keep edges between them.
- 3 Add all vertices with $d_w = \alpha 1$ to T. Keep edges between them, or to existing vertices in T.

An oversimplification, creating a tree T from graph G based at w:

- **I** First, calculate the distance d_w from w to each other vertex $(O(n^2)$ by Dijkstra). Call the largest of these distances α .
- **2** Add all vertices with $d_w = \alpha$ to T. Keep edges between them.
- 3 Add all vertices with $d_w = \alpha 1$ to T. Keep edges between them, or to existing vertices in T.
- 4 If two vertices with $d_w = \alpha 1$ are connected to the same existing vertex in T, identify them.

Approximating Trees	Gromov Hyperbolicity 000	Our Algorithm ●0	Conclusion

An oversimplification, creating a tree T from graph G based at w:

- **I** First, calculate the distance d_w from w to each other vertex $(O(n^2)$ by Dijkstra). Call the largest of these distances α .
- **2** Add all vertices with $d_w = \alpha$ to T. Keep edges between them.
- 3 Add all vertices with $d_w = \alpha 1$ to T. Keep edges between them, or to existing vertices in T.
- 4 If two vertices with $d_w = \alpha 1$ are connected to the same existing vertex in T, identify them.
- 5 Repeat steps 3 and 4 for $d_w = \alpha 2$, $\alpha 3$, ..., 0.

On Gromov's Approximating Tree

< D > < A > < B > < B >

Approximating	Trees
00000000	

Our Algorithm ○●

An Example

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza On Gromov's Approximating Tree Memorial University of Newfoundland

(日)、<四)、<三</p>

Appr		atin	g Tr	ees
000	000	00		

Our Algorithm ○●

Conclusion

An Example

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

Memorial University of Newfoundland

(日)、<四)、<三</p>

pproximating Trees	Gromov Hyperbolicity	Our Algorithm	Conclusion
0000000	000	○●	

An Example

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

Memorial University of Newfoundland

æ

Approximating	Trees
00000000	

Our Algorithm ○●

An Example

< (T) >

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

Memorial University of Newfoundland

pproximating Trees	Gromov Hyperbolicity	Our Algorithm	Conclusion
	000	○●	00

An Example

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

Memorial University of Newfoundland

• □ > < □ > < Ξ</p>

Approximating Trees	Gromov Hyperbolicity	Our Algorithm	Conclusi
	000	○●	00

An Example

A B +
A B +
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

Memorial University of Newfoundland

Approximating Trees	Gromov Hyperbolicity	Our Algorithm	Conclusion
	000	00	●○

Future Questions

■ Can the bound of *O*(*n*^ω log(*n*)) be improved in the general case, or for other types of metric spaces?

Our Algorithm

Future Questions

- Can the bound of *O*(*n*^ω log(*n*)) be improved in the general case, or for other types of metric spaces?
- Is there a similar algorithm for strongly connected directed graphs (non-commutative metrics)?

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

Our Algorithm

Future Questions

- Can the bound of *O*(*n*^ω log(*n*)) be improved in the general case, or for other types of metric spaces?
- Is there a similar algorithm for strongly connected directed graphs (non-commutative metrics)?
- What is the connection between the All Pairs Bottleneck Problem (APBP) and Gromov's approximating tree?

Approximating Trees

Gromov Hyperbolicity

Our Algorithm

Conclusion

Acknowledgements

Thank you!

Anders Cornect Joint work with Dr. Eduardo Martínez-Pedroza

On Gromov's Approximating Tree